D3NOC: Dynamic Data-Driven Network On Chip in Photonic Electronic Hybrids
نویسندگان
چکیده
In this paper we present a reconfigurable hybrid Photonic-Plasmonic Network-on-Chip (NoC) based on the Dynamic Data Driven Application System (DDDAS) paradigm. In DDDAS computations and measurements form a dynamic closed feedback loop in which they tune one another in response to changes in the environment. Our proposed system enables dynamic augmentation of a base electrical mesh topology with an optical express bus during the run-time. In addition, the measurement process itself adjusts to the environment. In order to achieve lower latencies, lower dynamic power, and higher throughput, we take advantage of a Configurable Hybrid Photonic Plasmonic Interconnect (CHyPPI) for our reconfigurable connections. We evaluate the performance and power of our system against kernels from NAS Parallel Benchmark (NPB) in addition to some synthetically generated traffic. In comparison to a 16×16 base electrical mesh, D3NOC shows up to 89% latency and 67% dynamic power net improvements beyond overhead-corrected performance. It should be noted that the design-space of NoC reconfiguration is vast and the goal of this study is not design-space exploration. Our goal is to show the potentials of adaptive dynamic measurements when coupled with other reconfiguration techniques in the NoC context.
منابع مشابه
Non-Blocking Routers Design Based on West First Routing Algorithm & MZI Switches for Photonic NoC
For the first time, the 4- and 5-port optical routers are designed by using the West First routing algorithm for use in optical network on chip. The use of the WF algorithm has made the designed routers to provide non-blocking routing in photonic network on chip. These routers not only are based on high speed Mach-Zehnder switches(Which have a higher bandwidth and more thermal tolerance than mi...
متن کاملNon-Blocking Routers Design Based on West First Routing Algorithm & MZI Switches for Photonic NoC
For the first time, the 4- and 5-port optical routers are designed by using the West First routing algorithm for use in optical network on chip. The use of the WF algorithm has made the designed routers to provide non-blocking routing in photonic network on chip. These routers not only are based on high speed Mach-Zehnder switches(Which have a higher bandwidth and more thermal tolerance than mi...
متن کاملA Review of Optical Routers in Photonic Networks-on-Chip: A Literature Survey
Due to the increasing growth of processing cores in complex computational systems, all the connection converted bottleneck for all systems. With the protection of progressing and constructing complex photonic connection on chip, optical data transmission is the best choice for replacing with electrical interconnection for the reason of gathering connection with a high bandwidth and insertion lo...
متن کاملFew-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers
A low operating energy is needed for nanocavity lasers designed for on-chip photonic network applications. On-chip nanocavity lasers must be driven by current because they act as light sources driven by electronic circuits. Here, we report the high-speed direct modulation of a lambda-scale embedded active region photonic-crystal (LEAP) laser that holds three records for any type of laser operat...
متن کاملPower and Performance Comparison of Electronic 2D-NoC and Opto-Electronic 2D-NoC
Nowadays, increasing emerging application complexity and improvement in process technology have enabled the design of many-core processors with tens to hundreds of cores on a single chip. Photonic Network-on-Chips (PNoCs) have recently been proposed as an alternative approach with high performance-per-watt characteristics for intra-chip communication. In this thesis, we present a performance ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1708.06721 شماره
صفحات -
تاریخ انتشار 2017